1,829 research outputs found

    Homeobox genes in normal and abnormal vasculogenesis

    Get PDF
    Homeobox containing genes are a family of transcription factors regulating normal development and controlling primary cellular processes (cell identity, cell division and differentiation) recently enriched by the discovery of their interaction with miRNAs and ncRNAs. Class I human homeobox genes (HOX genes) are characterized by a unique genomic network organization: four compact chromosomal loci where 39 sequence corresponding genes can be aligned with each other in 13 antero-posterior paralogous groups. The cardiovascular system is the first mesoderm organ-system to be generated during embryonic development; subsequently it generates the blood and lymphatic vascular systems. Cardiovascular remodelling is involved through homeobox gene regulation and deregulation in adult physiology (menstrual cycle and wound healing) and pathology (atherosclerosis, arterial restenosis, tumour angiogenesis and lymphangiogenesis). Understanding the role played by homeobox genes in endothelial and smooth muscle cell phenotype determination will be crucial in identifying the molecular processes involved in vascular cell differentiation, as well as to support future therapeutic strategies. We report here on the current knowledge of the role played by homeobox genes in normal and abnormal vasculogenesis and postulate a common molecular mechanism accounting for the involvement of homeobox genes in the regulation of the nuclear export of specific transcripts potentially capable of generating endothelial phenotype modification involved in new vessel formation

    Older but not slower: aging does not alter axonal transport dynamics of signalling endosomes in vivo

    Get PDF
    Efficient bi-directional axonal transport is critical for the function and survival of neurons. Defects in this process have been identified in early stages of several late-onset neurological disease models. Axonal transport is also thought to naturally decline with age, which could exacerbate pathological deficiencies and may alter disease onset and/or progression. Here, by using the atoxic binding fragment of tetanus neurotoxin (HcT), we monitored the transport kinetics of axonal signalling endosomes, which are intracellular compartments essential for neuronal differentiation and homeostasis. HcT can be injected into muscles, where it is taken up by nerve termini and hijacks the retrograde delivery of signalling endosomes. Assessing the dynamic properties of signalling endosomes in live, female, wild-type mice aged from one to over 13 months, we saw no significant alterations in transport speeds or pausing. Our work indicates that decline in signalling endosome kinetics does not occur before one year in vivo, suggesting that its deterioration during normal ageing is unlikely to be affecting previously reported disease-associated endosome transport deficits

    Walking the line: mechanisms underlying directional mRNA transport and localisation in neurons and beyond

    Get PDF
    Messenger RNA (mRNA) localisation enables a high degree of spatiotemporal control on protein synthesis, which contributes to establishing the asymmetric protein distribution required to set up and maintain cellular polarity. As such, a tight control of mRNA localisation is essential for many biological processes during development and in adulthood, such as body axes determination in Drosophila melanogaster and synaptic plasticity in neurons. The mechanisms controlling how mRNAs are localised, including difusion and entrapment, local degradation and directed active transport, are largely conserved across evolution and have been under investigation for decades in diferent biological models. In this review, we will discuss the standing of the feld regarding directional mRNA transport in light of the recent discovery that RNA can hitchhike on cytoplasmic organelles, such as endolysosomes, and the impact of these transport modalities on our understanding of neuronal function during development, adulthood and in neurodegeneratio

    Regulation of Axonal Transport by Protein Kinases

    Get PDF
    The intracellular transport of organelles, proteins, lipids, and RNA along the axon is essential for neuronal function and survival. This process, called axonal transport, is mediated by two classes of ATP-dependent motors, kinesins, and cytoplasmic dynein, which carry their cargoes along microtubule tracks. Protein kinases regulate axonal transport through direct phosphorylation of motors, adapter proteins, and cargoes, and indirectly through modification of the microtubule network. The misregulation of axonal transport by protein kinases has been implicated in the pathogenesis of several nervous system disorders. Here, we review the role of protein kinases acting directly on axonal transport and discuss how their deregulation affects neuronal function, paving the way for the exploitation of these enzymes as novel drug targets

    A video protocol for rapid dissection of mouse dorsal root ganglia from defined spinal levels

    Get PDF
    OBJECTIVE: Dorsal root ganglia (DRG) are heterogeneous assemblies of assorted sensory neuron cell bodies found in bilateral pairs at every level of the spinal column. Pseudounipolar afferent neurons convert external stimuli from the environment into electrical signals that are retrogradely transmitted to the spinal cord dorsal horn. To do this, they extend single axons from their DRG-resident somas that then bifurcate and project both centrally and distally. DRG can be dissected from mice at embryonic stages and any age post-natally, and have been extensively used to study sensory neuron development and function, response to injury, and pathological processes in acquired and genetic diseases. We have previously published a step-by-step dissection method for the rapid isolation of post-natal mouse DRG. Here, the objective is to extend the protocol by providing training videos that showcase the dissection in fine detail and permit the extraction of ganglia from defined spinal levels. RESULTS: By following this method, the reader will be able to swiftly and accurately isolate specific lumbar, thoracic, and cervical DRG from mice. Dissected ganglia can then be used for RNA/protein analyses, subjected to immunohistochemical examination, and cultured as explants or dissociated primary neurons, for in-depth investigations of sensory neuron biology

    Molecular Aspects of Secretory Granule Exocytosis by Neurons and Endocrine Cells

    Get PDF
    Neuronal communication and endocrine signaling are fundamental for integrating the function of tissues and cells in the body. Hormones released by endocrine cells are transported to the target cells through the circulation. By contrast, transmitter release from neurons occurs at specialized intercellular junctions, the synapses. Nevertheless, the mechanisms by which signal molecules are synthesized, stored, and eventually secreted by neurons and endocrine cells are very similar. Neurons and endocrine cells have in common two different types of secretory organelles, indicating the presence of two distinct secretory pathways. The synaptic vesicles of neurons contain excitatory or inhibitory neurotransmitters, whereas the secretory granules (also referred to as dense core vesicles, because of their electron dense content) are filled with neuropeptides and amines. In endocrine cells, peptide hormones and amines predominate in secretory granules. The function and content of vesicles, which share antigens with synaptic vesicles, are unknown for most endocrine cells. However, in B cells of the pancreatic islet, these vesicles contain GABA, which may be involved in intrainsular signaling.' Exocytosis of both synaptic vesicles and secretory granules is controlled by cytoplasmic calcium. However, the precise mechanisms of the subsequent steps, such as docking of vesicles and fusion of their membranes with the plasma membrane, are still incompletely understood. This contribution summarizes recent observations that elucidate components in neurons and endocrine cells involved in exocytosis. Emphasis is put on the intracellular aspects of the release of secretory granules that recently have been analyzed in detail

    Dissection, in vivo imaging and analysis of the mouse epitrochleoanconeus muscle

    Get PDF
    Analysis of rodent muscles affords an opportunity to glean key insights into neuromuscular development and the detrimental impact of disease-causing genetic mutations. Muscles of the distal leg, for instance the gastrocnemius and tibialis anterior, are commonly used in such studies with mice and rats. However, thin and flat muscles, which can be dissected, processed and imaged without major disruption to muscle fibres and nerve-muscle contacts, are more suitable for accurate and detailed analyses of the peripheral motor nervous system. One such wholemount muscle is the predominantly fast twitch epitrochleoanconeus (ETA), which is located in the upper forelimb, innervated by the radial nerve, and contains relatively large and uniformly flat neuromuscular junctions (NMJs). To facilitate incorporation of the ETA into the experimental toolkit of the neuromuscular disease field, here, we describe a simple method for its rapid isolation (<5 min), supported by high-resolution videos and step-by-step images. Furthermore, we outline how the ETA can be imaged in live, anaesthetised mice, to enable examination of dynamic cellular processes occurring at the NMJ and within intramuscular axons, including transport of organelles, such as mitochondria and signalling endosomes. Finally, we present reference data on wild-type ETA fibre-type composition in young adult, male C57BL6/J mice. Comparative neuroanatomical studies of different muscles in rodent models of disease can generate critical insights into pathogenesis and pathology; dissection of the wholemount ETA provides the possibility to diversify the repertoire of muscles analysed for this endeavour

    Methodological advances in imaging intravital axonal transport

    Get PDF
    Axonal transport is the active process whereby neurons transport cargoes such as organelles and proteins anterogradely from the cell body to the axon terminal and retrogradely in the opposite direction. Bi-directional transport in axons is absolutely essential for the functioning and survival of neurons and appears to be negatively impacted by both aging and diseases of the nervous system, such as Alzheimer's disease and amyotrophic lateral sclerosis. The movement of individual cargoes along axons has been studied in vitro in live neurons and tissue explants for a number of years; however, it is currently unclear as to whether these systems faithfully and consistently replicate the in vivo situation. A number of intravital techniques originally developed for studying diverse biological events have recently been adapted to monitor axonal transport in real-time in a range of live organisms and are providing novel insight into this dynamic process. Here, we highlight these methodological advances in intravital imaging of axonal transport, outlining key strengths and limitations while discussing findings, possible improvements, and outstanding questions

    Synthesis and characterization of nanocrystalline LaNi5 hydrogen storage materials

    Get PDF
    With the growing environmental concerns of greenhouse gas emissions from the burning of fossil fuels, it is becoming increasingly important to switch to cleaner alternative fuels such as hydrogen [1]. Inter-metallic LaNi5 is one of the most widely used and studied solid-state hydrogen storage material \u2013 a pet material for the prototype systems using hydrogen fuel. However, nanostructuring effects on this systems are not yet fully explored. Recently we have carried out systematic studies regarding the effect of nanostructuring on the hydrogen sorption properties of this material [2]. Unlike some other potential hydrogen storage materials, which shows faster kinetics upon nanostructuring, the long time ball-milling of the bulk LaNi5 results in the formation of an anomalous-state resistant to hydrogen absorption-desorption reactions. In this contribution, we present the preliminary differential scanning calorimetry (DSC), x-ray diffraction (XRD) and x-ray photoemission spectroscopy (XPS) data on the nanostrutured LaNi5 powders. XRD and XPS results indicate the long-time ball-milled and annealed LaNi5 to be of pure nanocrystalline phase. DSC results indicate a partial elimination of defects at 500oC, in a more efficient way for the short-time ball-milled powders compared to the long-time ball-milled samples. These results will be discussed in the light of the hydrogen sorption properties of the bulk and nanocrystalline LaNi5 samples

    Travelling Together: A Unifying Pathomechanism for ALS

    Get PDF
    Axonal transport is critical for neuronal homeostasis and relies on motor complexes bound to cargoes via specific adaptors. However, the mechanisms responsible for the spatiotemporal regulation of axonal transport are not completely understood. A recent study by Liao et al. contributes to filling this gap by reporting that RNA granules ‘hitchhike’ on LAMP1-positive organelles using annexin A11 as a tether
    • …
    corecore